First-Line XELOX Plus Bevacizumab Followed by XELOX Plus Bevacizumab or Single-Agent Bevacizumab as Maintenance Therapy in Patients with Metastatic Colorectal Cancer: The Phase III MACRO TTD Study

Eduardo Díaz-Rubio1, Auxiliadora Gómez-España2, Bartomeu Massutí3, Javier Sastre4, Albert Abad5, Manuel Valladares6, Fernando Rivera6, María J. Safont7, Purificación Martínez De Prado6, Manuel Gallén8, Encarnación González9, Eugenio Marcuello10, Manuel Benavides12, Carlos Fernández-Martos13, Ferrán Losa14, Pilar Escudero15, Antonio Arrivi16, Andrés Cervantes17, Rosario Dueñas18, Amelia López-Ladrón19, Adelaida Lacasta20, Marta Llanos21, Jose M. Tabernero22, Antonio Antón23, Enrique Aranda2, on behalf of the Spanish Cooperative Group for the Treatment of Digestive Tumors (TTD)

1HC San Carlos, Madrid, Spain; Center affiliate to the Red Temética de Investigación Cooperativa (RDeC17 06/0020/0021) Instituto Carlos III, Spanish Ministry of Science and Innovation, Madrid, Spain
2Hospital Reina Sofía, Córdoba, Spain
3Hospital General, Alicante, Spain
4Instituto Catalán de Oncología, Hospital German Trias I Pujol, Badalona, Spain
5Complejo Hospitalario Universitario La Coruña, La Coruña, Spain
6Hospital Marqués de Valdecilla, Santander, Spain
7Hospital General de Valencia, Valencia, Spain
8Hospital de Basurto, Vizcaya, Spain
9Hospital del Mar, Barcelona, Spain
10Hospital Virgen de las Nieves, Granada, Spain
11Hospital Santa Creu i Sant Pau, Barcelona, Spain
12Hospital Universitario Carlos Haya, Málaga, Spain
13Instituto Valenciano de Oncología, Valencia, Spain
14Hospital General de L’Hospitalet, Barcelona, Spain
15Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
16Fundación Hospital Son Llatzer, Palma de Mallorca, Spain
17Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain;
18Complejo Hospitalario de Jaén, Jaén, Spain
19Hospital Nuestra Señora de Valme, Sevilla, Spain
20Hospital de Donostia, Guipúzcoa, Spain
21Hospital Universitario de Canarias, Tenerife, Spain
22Hospital Universitari Vall Hebron, Barcelona, Spain
23Hospital Miguel Servet, Zaragoza, Spain

Disclosures: Eduardo Díaz-Rubio: Roche (C/A, RF); Auxiliadora Gómez-España: None; Bartomeu Massutí: Roche (C/A); Javier Sastre: None; Albert Abad: Roche (C/A); Manuel Valladares: Roche (C/A, RF, H); Fernando Rivera: Roche (C/A, RF); María J. Safont: None; Purificación Martínez de Prado: None; Manuel Gallén: None; Encarnación González: None; Eugenio Marcuello: None; Manuel Benavides: Roche (C/A); Carlos Fernández-Martos: None; Ferrán Losa: None; Pilar Escudero: None; Antonio Arrivi: None; Andrés Cervantes: Roche (H); Rosario Dueñas: None; Amelia López-Ladrón: None; Adelaida Lacasta: None; Marta Llanos: None; Jose M. Tabernero: Roche, Genentech, Sanofi-Aventis (C/A); Antonio Antón: None; Enrique Aranda: Roche, Merck Serono (C/A).
(C/A) Consulting/advisory relationship; (RF) Research funding; (E) Employment; (H) Honoraria received; (OI) Ownership interests; (IP) Intellectual property rights/inventor/patent holder; (SAB) Scientific advisory board.
Purpose: The aim of this phase III trial was to compare the efficacy and safety of bevacizumab alone with those of bevacizumab and capcitabine plus oxaliplatin (XELOX) as maintenance treatment following induction chemotherapy with XELOX plus bevacizumab in the first-line treatment of patients with metastatic colorectal cancer (mCRC).

Patients and Methods: Patients were randomly assigned to receive six cycles of bevacizumab, capcitabine, and oxaliplatin every 3 weeks followed by XELOX plus bevacizumab or bevacizumab alone until progression. The primary endpoint was the progression-free survival (PFS) interval; secondary endpoints were the overall survival (OS) time, objective response rate (RR), time to response, duration of response, and safety.

Results: The intent-to-treat population comprised 480 patients (XELOX plus bevacizumab, n = 239; bevacizumab, n = 241); there were no significant differences in baseline characteristics. The median follow-up was 29.0 months (range, 0–53.2 months). There were no statistically significant differences in the median PFS or OS times or in the RR between the two arms. The most common grade 3 or 4 toxicities in the XELOX plus bevacizumab versus bevacizumab arms were diarrhea, hand–foot syndrome, and neuropathy.

Conclusion: Although the noninferiority of bevacizumab versus XELOX plus bevacizumab cannot be confirmed, we can reliably exclude a median PFS detriment >3 weeks. This study suggests that maintenance therapy with single-agent bevacizumab may be an appropriate option following induction XELOX plus bevacizumab in mCRC patients.

Key words: Capcitabine, Oxaliplatin, 5-FU, Bevacizumab, Metastatic colorectal cancer.

Introduction

Ccapcitabine in combination with oxaliplatin (the CapeOX or XELOX regimens) is considered one of the standard chemotherapy regimens in the treatment of metastatic colorectal cancer (mCRC), having efficacy similar to that of regimens based on continuous infusions of 5-fluorouracil (5-FU) combined with oxaliplatin, as evaluated in several phase III studies (1, 2, 3, 4, 5) and in a recent meta-analysis (6). Bevacizumab is a humanized monoclonal antibody that inhibits vascular endothelial growth factor (7, 8) and has been shown to result in longer progression-free survival (PFS) and overall survival (OS) times when combined with chemotherapy for the treatment of patients with mCRC in the first- and second-line settings (4, 9, 10, 11, 12, 13). These findings have also been replicated in two large observational studies in the U.S. (Bevacizumab Regimens: Investigation of Treatment Effects and Safety) and Europe (Bevacizumab Expanded Access Trial) (14, 15, 16, 17).

In the NO16966 study, the addition of bevacizumab to chemotherapy resulted in a longer PFS interval but not OS time, although the durations of treatment were similar in the two groups of patients even though the protocol allowed for continued bevacizumab until disease progression (10). This led the authors to speculate that continuation of treatment with bevacizumab until progression might be necessary to maximize its efficacy. However, none of the studies performed to date have evaluated the role of bevacizumab as maintenance treatment after induction chemotherapy.

Several recent studies have suggested different strategies to limit the toxicity of chemotherapy, specifically focusing on oxaliplatin using intermittent schedules, a “stop-and-go” approach, and even chemotherapy holidays (18, 19, 20, 21, 22). The present study, Maintenance treatment in advanced colorectal cancer (MACRO) by the Spanish Cooperative Group for the Treatment of Digestive Tumors (TTD), was designed to assess the feasibility and effectiveness of maintenance treatment with single-agent bevacizumab after induction chemotherapy plus bevacizumab as an alternative to maintenance chemotherapy plus bevacizumab in patients with mCRC.

Patients and methods

Study Design

This study was a multicenter, randomized, open-label, phase III trial designed to evaluate the efficacy and safety of six cycles of XELOX plus bevacizumab followed by maintenance with XELOX plus bevacizumab versus single-agent bevacizumab in mCRC patients. Local ethics committee approval was obtained before enrollment of any patient into the study, which was performed in accordance with the Declaration of Helsinki and its subsequent amendments as well as the Good Clinical Practice Guidelines. Signed informed consent was obtained from all patients before study entry.

Patient Population

Outpatients aged ≥ 18 years with histologically confirmed mCRC, an Eastern Cooperative Oncology Group performance status score ≤ 2, and a life expectancy > 3 months were enrolled. All patients had to have at least one measurable lesion according to the Response Evaluation Criteria In Solid Tumors (RECIST) (23). Adjuvant chemotherapy (a fluoropyrimidine with or without...
Patients had to have adequate hematologic (hemoglobin > 9 g/dL, neutrophil count > 1.5 \times 10^9/L, and platelet count 100 \times 10^9/L), hepatic (serum bilirubin < 1.5 × the upper normal limit (UNL), glutamic oxaloacetic transaminase and glutamic pyruvic transaminase < 2.5 × UNL in the presence of hepatic metastases, and alkaline phosphatase ≤ 2.5 × UNL or ≤ 5 × UNL in cases of hepatic metastases or ≤ 10 × UNL in cases of bone metastases), and renal (creatinine clearance 30 mL/minute or serum creatinine < 2 mg/dL) functions. Pregnant or breast-feeding women were excluded. Other exclusion criteria were: clinically significant cardiac disease or myocardial infarction within the last 6 months, lack of physical integrity of the upper gastrointestinal tract, peripheral neuropathy, a history of malignancy other than cured basal cell carcinoma or in situ cervical carcinoma, and central nervous system metastases.

Treatment Plan

Patients were randomized 1:1 to one of two treatment arms. Initially, both groups received six cycles of XELOX (oxaliplatin, 130 mg/m² on day 1, and capecitabine, 1,000 mg/m² twice daily on days 1–14 every 3 weeks) plus bevacizumab (7.5 mg/kg) on day 1 of the 3-weekly cycle. Patients then received maintenance therapy consisting of either bevacizumab (7.5 mg/kg) once every 3 weeks (hereafter, the single-agent bevacizumab group) or XELOX plus bevacizumab (7.5 mg/kg) every 3 weeks until disease progression, severe toxicity, or withdrawal of consent (hereafter, XELOX plus bevacizumab group). The dose of capecitabine was reduced to 750 mg/m² twice daily in patients with a creatinine clearance of 30–50 mL/minute.

During the initial treatment period (and maintenance period for patients in the XELOX plus bevacizumab group), capecitabine and bevacizumab could be continued at the physician’s discretion in the event of discontinuation of oxaliplatin. Patients could continue receiving XELOX if bevacizumab was discontinued or capecitabine alone if oxaliplatin and bevacizumab were discontinued. Patients were removed from the study if capecitabine and bevacizumab were discontinued. During the maintenance phase in the single-agent bevacizumab group, patients were withdrawn from the study if bevacizumab was discontinued for > 3 weeks. Patients were also removed from the study if their tumor became operable and they underwent resection.

Assessments

A medical history, physical examination, routine blood analysis (hematology and biochemistry), and pregnancy test for women of childbearing age were performed within 1 week, and...
carcinoembryonic antigen measurement and electrocardiogram were performed within 4 weeks of entry. Imaging studies (including chest x-ray, computed tomography scans, and other examinations as indicated) were performed within 4 weeks of study entry and were repeated every 9 weeks during treatment.

The RECIST (23) were used to define all responses after patients received at least 9 weeks of therapy as follows: complete response (CR), partial response (PR), stable disease (SD), or progressive disease (PD). Disease control was defined as the sum of patients achieving a CR, PR, or SD. Confirmation of all responses was required after 4 weeks. Response was assessed by investigators only (i.e., there was no independent response evaluation committee).

Toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 3.0). In addition, the incidence of the following specific adverse events (irrespective of their possible relationship to bevacizumab treatment) was assessed: gastrointestinal perforation, wound-healing complications, bleeding/hemorrhage, hypertension, proteinuria, and thromboembolism (venous and arterial).

Table 3. Response rates according to treatment regimen (intent-to-treat population)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>XELOX + bevacizumab (n = 239)</th>
<th>Single-agent bevacizumab (n = 241)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n %</td>
<td>n %</td>
</tr>
<tr>
<td>Confirmed response, %</td>
<td>113 47</td>
<td>117 49</td>
</tr>
<tr>
<td>CR</td>
<td>8 3</td>
<td>11 5</td>
</tr>
<tr>
<td>Unconfirmed CR</td>
<td>5 2</td>
<td>0 0</td>
</tr>
<tr>
<td>PR</td>
<td>105 44</td>
<td>106 44</td>
</tr>
<tr>
<td>Unconfirmed PR</td>
<td>31 13</td>
<td>25 10</td>
</tr>
<tr>
<td>Stable disease</td>
<td>61 25</td>
<td>65 27</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>18 8</td>
<td>14 6</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>11 5</td>
<td>20 8</td>
</tr>
</tbody>
</table>

Table 4. Grade 3–4 adverse events considered relevant to treatment

<table>
<thead>
<tr>
<th>Event</th>
<th>XELOX + bevacizumab (n = 238)</th>
<th>Single-agent bevacizumab (n = 238)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory neuropathy</td>
<td>61 26</td>
<td>18 8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>26 11</td>
<td>31 13</td>
<td>.50</td>
</tr>
<tr>
<td>Hand–foot skin reaction</td>
<td>30 13</td>
<td>16 7</td>
<td>.03</td>
</tr>
<tr>
<td>Fatigue</td>
<td>24 10</td>
<td>10 4</td>
<td>.01</td>
</tr>
<tr>
<td>Hypertension</td>
<td>9 4</td>
<td>17 7</td>
<td>.11</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>1 < 1</td>
<td>5 2</td>
<td>.22</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>2 < 1</td>
<td>3 1</td>
<td>1.00</td>
</tr>
<tr>
<td>Gastrointestinal perforation</td>
<td>2 < 1</td>
<td>1 < 1</td>
<td>62</td>
</tr>
<tr>
<td>Bleeding</td>
<td>1 < 1</td>
<td>1 < 1</td>
<td>1.00</td>
</tr>
<tr>
<td>Gastrointestinal obstruction</td>
<td>0 0</td>
<td>1 < 1</td>
<td></td>
</tr>
<tr>
<td>Cardiac ischemia</td>
<td>0 0</td>
<td>1 < 1</td>
<td></td>
</tr>
</tbody>
</table>

* or Fisher exact test; Abbreviations: XELOX, capecitabine plus oxaliplatin

Statistical Analysis

The primary endpoint was the PFS interval, defined as the time from the start of treatment to progression or death. Secondary endpoints included the OS time, defined as the time from treatment initiation to death; objective tumor response; time to response (TTR), defined as the time from initiation of treatment until objective CR or PR; response duration; and safety.

Assuming an estimated PFS duration of 10 months in both treatment groups and a specified noninferiority limit for the hazard ratio (HR) of 1.32 (corresponding to a hypothetical inferiority of 7.6 months with single-agent bevacizumab maintenance therapy) to be excluded, it was estimated that a total of 470 patients (235 in each arm) needed to be randomized to achieve 80% statistical power with a one-sided error of 0.025. Noninferiority was concluded if the upper limit of the 95% confidence interval (CI) of the HR was 1.32. Results were described for the intent-to-treat population (all randomized patients) and the safety population (all patients who received at least one dose of medication).

Survival curves were estimated using the Kaplan–Meier method and compared using the log-rank test. A Cox regression model, including treatment group as a variable, was performed to estimate HRs for the survival analysis.

Results

Patients and Treatment

Between July 2006 and September 2008, 480 patients were entered into the study; 239 were randomized to maintenance XELOX plus bevacizumab after induction XELOX plus bevacizumab and 241 were randomized to single-agent bevacizumab after induction XELOX plus bevacizumab (Fig. 1). Three patients in the single-agent bevacizumab group and one patient in the XELOX plus bevacizumab group were not included in the safety population: the patient in the XELOX plus bevacizumab group was excluded because he did not fulfill the eligibility criteria, whereas two patients in the single-agent bevacizumab group were excluded because they did not fulfill the eligibility criteria and one was included outside the recruitment period. The safety population therefore consisted of 238 patients in each arm. Baseline demographic and clinical characteristics were well balanced between treatment arms (Table 1).

Treatment compliance was similar in both groups, with patients in the combination arm receiving a median of nine cycles (range, 1–49 cycles) and those in the single-agent bevacizumab group receiving a median of 10 cycles (range, 1–54 cycles). The median cumulative doses over the study period were as follows: oxaliplatin, 801.3 mg/m² and 770.2 mg/m² in the XELOX plus bevacizumab and single-agent bevacizumab groups, respectively, bevacizumab, 675 mg/kg and 741.4 mg/kg, respectively; and capecitabine, 217,156 mg/m² and 153,456 mg/m², respectively. Oxaliplatin dose intensity data by cycle for the two treatment groups are shown in Table 2.

Efficacy

The median follow-up time was 29.0 months (range, 0–53.2 months). The median PFS interval was 10.4 months (95% CI, 9.4–11.9 months) in the XELOX plus bevacizumab group and 9.7 months (95% CI, 8.3–10.6 months) in the sing-
le-agent bevacizumab group (HR, 1.10; 95% CI, 0.89–1.35) (Fig. 2A). This difference was not statistically significant (p = .38). However, because the predefined noninferiority limit was 1.32 for the HR for the median PFS time, we could not conclude that single-agent bevacizumab was noninferior to XELOX plus bevacizumab.

There was no statistically significant difference in the median OS times: 23.2 months (95% CI, 19.8–26.0 months) in the XELOX plus bevacizumab group and 20.0 months (95% CI, 18.0–23.3 months) in the single-agent bevacizumab group (HR, 1.05; 95% CI, 0.85–1.30; p = .65) (Figure 2B).

Response to treatment is summarized in Table 3. Confirmed response rates (RRs) were similar in the two treatment groups (47% for XELOX plus bevacizumab versus 49% for single-agent bevacizumab; odds ratio, 0.95; 95% CI, 0.66–1.36). Individual responses to treatment are shown in Figure 3.

The median duration of response was 11.0 months (95% CI, 8.7–12.0 months) in the XELOX plus bevacizumab arm and 8.3 months (95% CI, 7.1–9.5 months) in the single-agent bevacizumab group, which again was not significantly different between groups (HR, 1.17; 95% CI, 0.90–1.54; p = .25). The tumor control rates (RR SD) were similar in the two arms (73% versus 76%). The median TTR were also similar, at 4.0 months (95% CI, 3.6–4.1 months) in the XELOX plus bevacizumab arm and 3.9 months (95% CI, 3.6–4.1 months) in the single-agent bevacizumab arm (HR, 0.98; 95% CI, 0.78–1.23; p = .86).

The proportions of patients receiving second and further lines of therapy were similar in the two groups: 72% and 74% of patients in the XELOX plus bevacizumab and single-agent bevacizumab groups, respectively, received second-line therapy; 41% and 42%, respectively, received third-line therapy; and 17% of patients in both groups received four or more lines of therapy. Twenty-nine patients (12%) in the XELOX plus bevacizumab group underwent salvage surgery (liver, n = 26; lung, n = 2; other sites, n = 1), 22 of whom had an R0 resection; 25 patients (10%) in the single-agent bevacizumab arm had salvage surgery (liver, n = 19; lung, n = 3; other sites, n = 3), 15 of whom had an R0 resection. The median time to surgery was 6.7 months (range, 3.1–30.0 months) in the XELOX plus bevacizumab group and 8.8 months (range, 3.8–17.6 months) in the single-agent bevacizumab group.

Safety

Patients discontinued the study for the following reasons: disease progression in 112 patients (47%) in the XELOX plus bevacizumab group and 127 patients (53%) in the single-agent bevacizumab group and premature withdrawal in 124 (52%) and 112 (46%) patients, respectively. The most common reasons for premature withdrawal were toxicity/adverse events or intercurrent illness in 51 patients (41%) in the XELOX plus bevacizumab group and 52 patients (46%) in the single-agent bevacizumab group, surgery in 35 (28%) and 28 (25%) patients, respectively, death in 12 (10%) and nine (8%) patients, respectively, and the patient’s decision in 13 (10%) and five (4%) patients, respectively. Three patients in the XELOX plus bevacizumab group and two patients in the single-agent bevacizumab group remain on treatment.

Oxaliplatin doses were reduced or suspended in 11.5% of cycles in the XELOX plus bevacizumab arm and 4.8% of cycles in the single-agent bevacizumab arm, primarily as a result of peripheral neuropathy (52%). Capecitabine doses were reduced or suspended in 79% of cycles in the XELOX plus bevacizumab arm and 12.3% of cycles in the single-agent bevacizumab arm, with the most common causes being hand–foot syndrome (17%) and diarrhea (25%). Bevacizumab doses were suspended in 2.9% of cycles in both treatment arms, primarily as a result of weight loss (42%).

During the maintenance phase, oxaliplatin doses were reduced in 20% of patients in the XELOX plus bevacizumab group, primarily as a result of peripheral neuropathy (65%). Capecitabine doses were reduced in 19% of patients, the most common causes of which were hand–foot syndrome (33%) and diarrhea (18%).
Figure 3. Waterfall plot of maximum percentage reduction in target lesions with capicitabine and oxaliplatin (XELOX) plus bevacizumab (n = 220) (A) and with single-agent bevacizumab (n = 210) (B) following six cycles of XELOX plus bevacizumab.

Discussion

New chemotherapeutic and biologic agents, which prolong survival in patients with mCRC, present physicians with new challenges. With the availability of these agents, patients may require treatment for longer periods than ever before, which calls into question the optimum sequence and duration of treatment. Recent studies in patients with mCRC have investigated a variety of approaches to treatment, including intermittent chemotherapy (19), stop-and-go therapy (18, 21, 24, 25), and low-intensity maintenance strategies (20, 21), with the aim of reducing the burden of treatment for patients. The present study is, however, the first study to investigate the role of maintenance with a biological agent alone as part of the treatment regimen.

The results from this study indicate that non-inferiority in terms of the PFS interval cannot be confirmed for single-agent bevacizumab maintenance compared with XELOX plus bevacizumab maintenance after induction therapy with six cycles of XELOX plus bevacizumab, because the upper limit of the 95% CI was greater than the prespecified limit of 1.32. However, a detriment in the median PFS duration of 3 weeks can be excluded. The PFS results obtained in both arms of our study are consistent with data reported from other studies using combinations of chemotherapy with bevacizumab (9, 10, 26) or with cetuximab or panitumumab in the wild-type KRAS population (27, 28, 29).

Additionally, in our study, there were no statistically significant differences in the median OS time or confirmed RR between patients who received single-agent bevacizumab and those who received XELOX plus bevacizumab. These findings mirror those from other studies using less intensive maintenance chemotherapy, such as 5-FU alone, after initial therapy. Indeed, this approach was used in the Optimized Leucovorin-Oxaliplatin (OPTIMOX) 1 study, which demonstrated that oxaliplatin could be discontinued without adverse consequences after six cycles of 5-FU, leucovorin, and oxaliplatin (FOLFOX) in patients with mCRC (21).

Interestingly, the results obtained in the control arm of the MACROstudy (with XELOX plus bevacizumab until progression) compare favorably with those obtained in a previous study performed by our TTD group using XELOX (20, 21), with the aim of reducing the burden of treatment for patients. The present study is, however, the first study to investigate the role of maintenance with a biological agent alone as part of the treatment regimen.

The current findings are also comparable with the findings of the OPTIMOX 1 study, which demonstrated that oxaliplatin could be discontinued without adverse consequences after six cycles of 5-FU, leucovorin, and oxaliplatin (FOLFOX) in patients with mCRC (21).

Adverse events resulting in death occurred in 11 patients (5%) in the XELOX plus bevacizumab group and 17 patients (7%) in the single-agent bevacizumab group. Deaths were considered remotely, possibly, or probably related to treatment in four patients in the XELOX plus bevacizumab group (gastrointestinal perforation, n = 1; enteritis, n = 1; death not otherwise specified, n = 1); and eight patients in the single-agent bevacizumab group (gastrointestinal perforation, n = 1; rectal perforation, n = 1; diarrhea, n = 1; gastrointestinal/other, n = 2; cardiopulmonary arrest, n = 1; gastrointestinal obstruction, n = 1; death not otherwise specified, n = 1). Four deaths in the XELOX plus bevacizumab group and six in the single-agent bevacizumab group occurred within 60 days of the last treatment administration.

Sensory neuropathy, hand–foot syndrome, and fatigue were reported in 34 patients (14%) in the XELOX plus bevacizumab group and 47 patients (20%) in the single-agent bevacizumab group. Serious treatment-related adverse events were reported in 114 patients (47%) in the XELOX plus bevacizumab group and 47 patients (20%) in the single-agent bevacizumab group.

Serious treatment-related adverse events reported in 34 patients (14%) in the XELOX plus bevacizumab group and 47 patients (20%) in the single-agent bevacizumab group. Deaths were considered remotely, possibly, or probably related to treatment in four patients in the XELOX plus bevacizumab group (gastrointestinal perforation, n = 1; enteritis, n = 1; death not otherwise specified, n = 1) and eight patients in the single-agent bevacizumab group (gastrointestinal perforation, n = 1; rectal perforation, n = 1; diarrhea, n = 1; gastrointestinal/other, n = 2; cardiopulmonary arrest, n = 1; gastrointestinal obstruction, n = 1; death not otherwise specified, n = 1). Four deaths in the XELOX plus bevacizumab group and six in the single-agent bevacizumab group occurred within 60 days of the last treatment administration.

Abbreviations
- CR – complete response
- PD – progressive disease
- PR – partial response
- SD – stable disease
- XELOX – capicitabine plus oxaliplatin
Our trial suggests that a maintenance strategy with single-agent bevacizumab after induction with XELOX plus bevacizumab for six cycles may be a valid option in this setting, without compromising the PFS interval, OS time, RR, duration of response, or surgical treatment of metastases, with an important lower incidence of certain toxicities, such as neuropathy, hand-foot syndrome, and fatigue.

Information from ongoing studies evaluating maintenance treatment with bevacizumab after standard chemotherapy in mCRC patients (Double Inhibition, Reintroduction, Erlotinib, Avastin, meta-astic CRC study (DREAM), Cepecatabine, Irinotecan, Oxaliplatin study (CAIRO)-3, Arbeitsgemeinschaft Internistische Onkologie Groups (AIO) -ML21768 studies) will be important in determining how best to optimize efficacy and minimize side effects in this patient population. Each of these studies includes a QoL assessment as a secondary endpoint and will help quantify the benefits for patients of more versus less intensive maintenance regimens.

In conclusion, although the MACRO study did not meet its primary endpoint of noninferiority, the results suggest that single-agent bevacizumab after six cycles of XELOX plus bevacizumab may be a potential alternative to continued XELOX plus bevacizumab for patients with mCRC.

Medical writer acknowledgment

The authors take full responsibility for the content of the paper but thank Lee Miller (Miller Medical Communications, supported by Roche Farma SA) for copyediting/proofreading (e.g., grammatical assistance, stylistic suggestions to outline or draft), editorial assistance (e.g., preparing references, fact checking, labelling illustrations or tables), and production assistance (e.g., assembling tables, graphs, figures, photos, or other illustrations).

Acknowledgments

The physicians listed below cared for the patients in this study. The authors thank them for their cooperation and support: E. Aranda and A. Gómez. (H. Reina Sofia); B. Massutí and A. Yuste (H. General Universitario de Alicante); E. Díaz Rubio and J. Sastre (H. Universitario Clínico San Carlos); A. Abad (ICO. H. Germans Trias i Pujol); M. Valladares (C. H. Universitario Juan Canalejo); F. Rivera (H. Marqués de Valdecilla); M. J. Sañon (H. General Universitario de València); P. Martínez de Prado (H. de Basurto); M. Gallén (H. del Mar); E. González (H. Virgen de las Nieves); M. Benavides (H. Universitario Carlos Haya); E. Marcuello (H. Santa Creu i Sant Pau); C. Fernández-Martos (Instituto Valenciano de Oncología); F. Losa (H. General de L’Hospitalitat); P. Escudero (H. C. Universitario Lozano Blesa); A. Cervantes (H. Clínico de Valencia); A. Arivi (F. H. Son Llatzer); R. Dueñas (H. Ciudad de Jaén); A. Lacasta (H. de Donostia); M. Llanos (H. Universitario de Canarias); A. López-Ladrón (H. Nuestra Señora de Valme); A. Anton (H. Miguel Servet); J. Ma. Tabernero (H. Universitari Vall d’Hebron); J. Remón (H. de Matarr); C. Martín and S. Alboli (H. del Espíritu Santo); J. Ma. Vicent and A. Galán (H. de Sagunto); H. Manzano (H. Son Dureta); J. Alfaro (C. Sanitari de Terrassa); Ma. J. Gómez (H. Puerta del Mar); T. García (H.Morales Meseguer); A. Velasco (H. Universitario de la Princesa); J. L. García López (H. Ramón y Cajal); D. Almenar (H. Dr. Peset); R. Vera (H. de Navarra); E. Jiménez (H. Jerez de la Frontera); A. Currato and A. Rodríguez Lescure (H. General Universitario de Elche); J. L. García Puche (H. Clínico San Cecilio); J. García-Foncillas (C. Universitaria de Navarra); V. Alberola (H. Arnau de Villanova); M. Constenla (Complejo Hospitalario Pontevedra); A. Etexebiria (Instituto Oncológico); P. Bueso (H. de Barbastro); T. Checa (H. de Oncología Corachán); E. Cabrera, L. del Río, and A. Oltra (H. Virgen de los Lirios); A. Ruiz (H. de Fuenlabrada); C. Alonso (H. General de Albacete).

TTD Data Center: I. Ruiz de Mena and S. Rodríguez; Statistics and Data Management: Pivotal: N. Martin and J.J. García; Monitoring: Dynamic Solutions: A. Ríos and A. Sotés; Sponsors: Roche: B. Bendahmane and G. García; Sanofi- Aventis: O. Diez and X. Marfil. Supported by the Spanish Cooperative Group for the Treatment of Digestive Tumors (TTD), Madrid, Spain. Financial support for this research trial was provided by Roche and Sanofi-Aventis.

Author contributions

Provision of study material or patients: Eduardo Díaz-Rubio, Auxiliadora Gómez-Españo, Bartomeu Massutí, Javier Sastre, Albert Abad, Manuel Valladares, Fernando Rivera, María J. Sañon, Purificación Martínez de Prado, Manuel

References